Step |
Hyp |
Ref |
Expression |
0 |
|
ccncf |
⊢ –cn→ |
1 |
|
va |
⊢ 𝑎 |
2 |
|
cc |
⊢ ℂ |
3 |
2
|
cpw |
⊢ 𝒫 ℂ |
4 |
|
vb |
⊢ 𝑏 |
5 |
|
vf |
⊢ 𝑓 |
6 |
4
|
cv |
⊢ 𝑏 |
7 |
|
cmap |
⊢ ↑m |
8 |
1
|
cv |
⊢ 𝑎 |
9 |
6 8 7
|
co |
⊢ ( 𝑏 ↑m 𝑎 ) |
10 |
|
vx |
⊢ 𝑥 |
11 |
|
ve |
⊢ 𝑒 |
12 |
|
crp |
⊢ ℝ+ |
13 |
|
vd |
⊢ 𝑑 |
14 |
|
vy |
⊢ 𝑦 |
15 |
|
cabs |
⊢ abs |
16 |
10
|
cv |
⊢ 𝑥 |
17 |
|
cmin |
⊢ − |
18 |
14
|
cv |
⊢ 𝑦 |
19 |
16 18 17
|
co |
⊢ ( 𝑥 − 𝑦 ) |
20 |
19 15
|
cfv |
⊢ ( abs ‘ ( 𝑥 − 𝑦 ) ) |
21 |
|
clt |
⊢ < |
22 |
13
|
cv |
⊢ 𝑑 |
23 |
20 22 21
|
wbr |
⊢ ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 |
24 |
5
|
cv |
⊢ 𝑓 |
25 |
16 24
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
26 |
18 24
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
27 |
25 26 17
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) |
28 |
27 15
|
cfv |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) |
29 |
11
|
cv |
⊢ 𝑒 |
30 |
28 29 21
|
wbr |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 |
31 |
23 30
|
wi |
⊢ ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
32 |
31 14 8
|
wral |
⊢ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
33 |
32 13 12
|
wrex |
⊢ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
34 |
33 11 12
|
wral |
⊢ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
35 |
34 10 8
|
wral |
⊢ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) |
36 |
35 5 9
|
crab |
⊢ { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) } |
37 |
1 4 3 3 36
|
cmpo |
⊢ ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) } ) |
38 |
0 37
|
wceq |
⊢ –cn→ = ( 𝑎 ∈ 𝒫 ℂ , 𝑏 ∈ 𝒫 ℂ ↦ { 𝑓 ∈ ( 𝑏 ↑m 𝑎 ) ∣ ∀ 𝑥 ∈ 𝑎 ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑦 ∈ 𝑎 ( ( abs ‘ ( 𝑥 − 𝑦 ) ) < 𝑑 → ( abs ‘ ( ( 𝑓 ‘ 𝑥 ) − ( 𝑓 ‘ 𝑦 ) ) ) < 𝑒 ) } ) |