Metamath Proof Explorer


Definition df-cnfld

Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) (New usage is discouraged.)

Ref Expression
Assertion df-cnfld fld = ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnfld fld
1 cbs Base
2 cnx ndx
3 2 1 cfv ( Base ‘ ndx )
4 cc
5 3 4 cop ⟨ ( Base ‘ ndx ) , ℂ ⟩
6 cplusg +g
7 2 6 cfv ( +g ‘ ndx )
8 caddc +
9 7 8 cop ⟨ ( +g ‘ ndx ) , + ⟩
10 cmulr .r
11 2 10 cfv ( .r ‘ ndx )
12 cmul ·
13 11 12 cop ⟨ ( .r ‘ ndx ) , · ⟩
14 5 9 13 ctp { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ }
15 cstv *𝑟
16 2 15 cfv ( *𝑟 ‘ ndx )
17 ccj
18 16 17 cop ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩
19 18 csn { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ }
20 14 19 cun ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } )
21 cts TopSet
22 2 21 cfv ( TopSet ‘ ndx )
23 cmopn MetOpen
24 cabs abs
25 cmin
26 24 25 ccom ( abs ∘ − )
27 26 23 cfv ( MetOpen ‘ ( abs ∘ − ) )
28 22 27 cop ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩
29 cple le
30 2 29 cfv ( le ‘ ndx )
31 cle
32 30 31 cop ⟨ ( le ‘ ndx ) , ≤ ⟩
33 cds dist
34 2 33 cfv ( dist ‘ ndx )
35 34 26 cop ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩
36 28 32 35 ctp { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ }
37 cunif UnifSet
38 2 37 cfv ( UnifSet ‘ ndx )
39 cmetu metUnif
40 26 39 cfv ( metUnif ‘ ( abs ∘ − ) )
41 38 40 cop ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩
42 41 csn { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ }
43 36 42 cun ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } )
44 20 43 cun ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )
45 0 44 wceq fld = ( ( { ⟨ ( Base ‘ ndx ) , ℂ ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( .r ‘ ndx ) , · ⟩ } ∪ { ⟨ ( *𝑟 ‘ ndx ) , ∗ ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( abs ∘ − ) ) ⟩ , ⟨ ( le ‘ ndx ) , ≤ ⟩ , ⟨ ( dist ‘ ndx ) , ( abs ∘ − ) ⟩ } ∪ { ⟨ ( UnifSet ‘ ndx ) , ( metUnif ‘ ( abs ∘ − ) ) ⟩ } ) )