| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ces | ⊢  evalSub | 
						
							| 1 |  | vi | ⊢ 𝑖 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | ccrg | ⊢ CRing | 
						
							| 5 |  | cbs | ⊢ Base | 
						
							| 6 | 3 | cv | ⊢ 𝑠 | 
						
							| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑠 ) | 
						
							| 8 |  | vb | ⊢ 𝑏 | 
						
							| 9 |  | vr | ⊢ 𝑟 | 
						
							| 10 |  | csubrg | ⊢ SubRing | 
						
							| 11 | 6 10 | cfv | ⊢ ( SubRing ‘ 𝑠 ) | 
						
							| 12 | 1 | cv | ⊢ 𝑖 | 
						
							| 13 |  | cmpl | ⊢  mPoly | 
						
							| 14 |  | cress | ⊢  ↾s | 
						
							| 15 | 9 | cv | ⊢ 𝑟 | 
						
							| 16 | 6 15 14 | co | ⊢ ( 𝑠  ↾s  𝑟 ) | 
						
							| 17 | 12 16 13 | co | ⊢ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) ) | 
						
							| 18 |  | vw | ⊢ 𝑤 | 
						
							| 19 |  | vf | ⊢ 𝑓 | 
						
							| 20 | 18 | cv | ⊢ 𝑤 | 
						
							| 21 |  | crh | ⊢  RingHom | 
						
							| 22 |  | cpws | ⊢  ↑s | 
						
							| 23 | 8 | cv | ⊢ 𝑏 | 
						
							| 24 |  | cmap | ⊢  ↑m | 
						
							| 25 | 23 12 24 | co | ⊢ ( 𝑏  ↑m  𝑖 ) | 
						
							| 26 | 6 25 22 | co | ⊢ ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) | 
						
							| 27 | 20 26 21 | co | ⊢ ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) | 
						
							| 28 | 19 | cv | ⊢ 𝑓 | 
						
							| 29 |  | cascl | ⊢ algSc | 
						
							| 30 | 20 29 | cfv | ⊢ ( algSc ‘ 𝑤 ) | 
						
							| 31 | 28 30 | ccom | ⊢ ( 𝑓  ∘  ( algSc ‘ 𝑤 ) ) | 
						
							| 32 |  | vx | ⊢ 𝑥 | 
						
							| 33 | 32 | cv | ⊢ 𝑥 | 
						
							| 34 | 33 | csn | ⊢ { 𝑥 } | 
						
							| 35 | 25 34 | cxp | ⊢ ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) | 
						
							| 36 | 32 15 35 | cmpt | ⊢ ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) ) | 
						
							| 37 | 31 36 | wceq | ⊢ ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) ) | 
						
							| 38 |  | cmvr | ⊢  mVar | 
						
							| 39 | 12 16 38 | co | ⊢ ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) | 
						
							| 40 | 28 39 | ccom | ⊢ ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) ) | 
						
							| 41 |  | vg | ⊢ 𝑔 | 
						
							| 42 | 41 | cv | ⊢ 𝑔 | 
						
							| 43 | 33 42 | cfv | ⊢ ( 𝑔 ‘ 𝑥 ) | 
						
							| 44 | 41 25 43 | cmpt | ⊢ ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) | 
						
							| 45 | 32 12 44 | cmpt | ⊢ ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 46 | 40 45 | wceq | ⊢ ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 47 | 37 46 | wa | ⊢ ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 48 | 47 19 27 | crio | ⊢ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 49 | 18 17 48 | csb | ⊢ ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 50 | 9 11 49 | cmpt | ⊢ ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 51 | 8 7 50 | csb | ⊢ ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 52 | 1 3 2 4 51 | cmpo | ⊢ ( 𝑖  ∈  V ,  𝑠  ∈  CRing  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) | 
						
							| 53 | 0 52 | wceq | ⊢  evalSub   =  ( 𝑖  ∈  V ,  𝑠  ∈  CRing  ↦  ⦋ ( Base ‘ 𝑠 )  /  𝑏 ⦌ ( 𝑟  ∈  ( SubRing ‘ 𝑠 )  ↦  ⦋ ( 𝑖  mPoly  ( 𝑠  ↾s  𝑟 ) )  /  𝑤 ⦌ ( ℩ 𝑓  ∈  ( 𝑤  RingHom  ( 𝑠  ↑s  ( 𝑏  ↑m  𝑖 ) ) ) ( ( 𝑓  ∘  ( algSc ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑟  ↦  ( ( 𝑏  ↑m  𝑖 )  ×  { 𝑥 } ) )  ∧  ( 𝑓  ∘  ( 𝑖  mVar  ( 𝑠  ↾s  𝑟 ) ) )  =  ( 𝑥  ∈  𝑖  ↦  ( 𝑔  ∈  ( 𝑏  ↑m  𝑖 )  ↦  ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) ) |