Step |
Hyp |
Ref |
Expression |
0 |
|
cexps |
⊢ ↑s |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
csur |
⊢ No |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
czs |
⊢ ℤs |
5 |
3
|
cv |
⊢ 𝑦 |
6 |
|
c0s |
⊢ 0s |
7 |
5 6
|
wceq |
⊢ 𝑦 = 0s |
8 |
|
c1s |
⊢ 1s |
9 |
|
cslt |
⊢ <s |
10 |
6 5 9
|
wbr |
⊢ 0s <s 𝑦 |
11 |
|
cmuls |
⊢ ·s |
12 |
|
cnns |
⊢ ℕs |
13 |
1
|
cv |
⊢ 𝑥 |
14 |
13
|
csn |
⊢ { 𝑥 } |
15 |
12 14
|
cxp |
⊢ ( ℕs × { 𝑥 } ) |
16 |
11 15 8
|
cseqs |
⊢ seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) |
17 |
5 16
|
cfv |
⊢ ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) |
18 |
|
cdivs |
⊢ /su |
19 |
|
cnegs |
⊢ -us |
20 |
5 19
|
cfv |
⊢ ( -us ‘ 𝑦 ) |
21 |
20 16
|
cfv |
⊢ ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) |
22 |
8 21 18
|
co |
⊢ ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) |
23 |
10 17 22
|
cif |
⊢ if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) |
24 |
7 8 23
|
cif |
⊢ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) |
25 |
1 3 2 4 24
|
cmpo |
⊢ ( 𝑥 ∈ No , 𝑦 ∈ ℤs ↦ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) ) |
26 |
0 25
|
wceq |
⊢ ↑s = ( 𝑥 ∈ No , 𝑦 ∈ ℤs ↦ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) ) |