| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cexps |
⊢ ↑s |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
csur |
⊢ No |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
|
czs |
⊢ ℤs |
| 5 |
3
|
cv |
⊢ 𝑦 |
| 6 |
|
c0s |
⊢ 0s |
| 7 |
5 6
|
wceq |
⊢ 𝑦 = 0s |
| 8 |
|
c1s |
⊢ 1s |
| 9 |
|
cslt |
⊢ <s |
| 10 |
6 5 9
|
wbr |
⊢ 0s <s 𝑦 |
| 11 |
|
cmuls |
⊢ ·s |
| 12 |
|
cnns |
⊢ ℕs |
| 13 |
1
|
cv |
⊢ 𝑥 |
| 14 |
13
|
csn |
⊢ { 𝑥 } |
| 15 |
12 14
|
cxp |
⊢ ( ℕs × { 𝑥 } ) |
| 16 |
11 15 8
|
cseqs |
⊢ seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) |
| 17 |
5 16
|
cfv |
⊢ ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) |
| 18 |
|
cdivs |
⊢ /su |
| 19 |
|
cnegs |
⊢ -us |
| 20 |
5 19
|
cfv |
⊢ ( -us ‘ 𝑦 ) |
| 21 |
20 16
|
cfv |
⊢ ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) |
| 22 |
8 21 18
|
co |
⊢ ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) |
| 23 |
10 17 22
|
cif |
⊢ if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) |
| 24 |
7 8 23
|
cif |
⊢ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) |
| 25 |
1 3 2 4 24
|
cmpo |
⊢ ( 𝑥 ∈ No , 𝑦 ∈ ℤs ↦ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) ) |
| 26 |
0 25
|
wceq |
⊢ ↑s = ( 𝑥 ∈ No , 𝑦 ∈ ℤs ↦ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us ‘ 𝑦 ) ) ) ) ) ) |