Metamath Proof Explorer


Definition df-exps

Description: Define surreal exponentiation. Compare df-exp . (Contributed by Scott Fenton, 27-May-2025)

Ref Expression
Assertion df-exps s = ( 𝑥 No , 𝑦 ∈ ℤs ↦ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us𝑦 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cexps s
1 vx 𝑥
2 csur No
3 vy 𝑦
4 czs s
5 3 cv 𝑦
6 c0s 0s
7 5 6 wceq 𝑦 = 0s
8 c1s 1s
9 cslt <s
10 6 5 9 wbr 0s <s 𝑦
11 cmuls ·s
12 cnns s
13 1 cv 𝑥
14 13 csn { 𝑥 }
15 12 14 cxp ( ℕs × { 𝑥 } )
16 11 15 8 cseqs seqs 1s ( ·s , ( ℕs × { 𝑥 } ) )
17 5 16 cfv ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 )
18 cdivs /su
19 cnegs -us
20 5 19 cfv ( -us𝑦 )
21 20 16 cfv ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us𝑦 ) )
22 8 21 18 co ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us𝑦 ) ) )
23 10 17 22 cif if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us𝑦 ) ) ) )
24 7 8 23 cif if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us𝑦 ) ) ) ) )
25 1 3 2 4 24 cmpo ( 𝑥 No , 𝑦 ∈ ℤs ↦ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us𝑦 ) ) ) ) ) )
26 0 25 wceq s = ( 𝑥 No , 𝑦 ∈ ℤs ↦ if ( 𝑦 = 0s , 1s , if ( 0s <s 𝑦 , ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ 𝑦 ) , ( 1s /su ( seqs 1s ( ·s , ( ℕs × { 𝑥 } ) ) ‘ ( -us𝑦 ) ) ) ) ) )