| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfcf |
⊢ fClusf |
| 1 |
|
vj |
⊢ 𝑗 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vf |
⊢ 𝑓 |
| 4 |
|
cfil |
⊢ Fil |
| 5 |
4
|
crn |
⊢ ran Fil |
| 6 |
5
|
cuni |
⊢ ∪ ran Fil |
| 7 |
|
vg |
⊢ 𝑔 |
| 8 |
1
|
cv |
⊢ 𝑗 |
| 9 |
8
|
cuni |
⊢ ∪ 𝑗 |
| 10 |
|
cmap |
⊢ ↑m |
| 11 |
3
|
cv |
⊢ 𝑓 |
| 12 |
11
|
cuni |
⊢ ∪ 𝑓 |
| 13 |
9 12 10
|
co |
⊢ ( ∪ 𝑗 ↑m ∪ 𝑓 ) |
| 14 |
|
cfcls |
⊢ fClus |
| 15 |
|
cfm |
⊢ FilMap |
| 16 |
7
|
cv |
⊢ 𝑔 |
| 17 |
9 16 15
|
co |
⊢ ( ∪ 𝑗 FilMap 𝑔 ) |
| 18 |
11 17
|
cfv |
⊢ ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) |
| 19 |
8 18 14
|
co |
⊢ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) |
| 20 |
7 13 19
|
cmpt |
⊢ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) |
| 21 |
1 3 2 6 20
|
cmpo |
⊢ ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) |
| 22 |
0 21
|
wceq |
⊢ fClusf = ( 𝑗 ∈ Top , 𝑓 ∈ ∪ ran Fil ↦ ( 𝑔 ∈ ( ∪ 𝑗 ↑m ∪ 𝑓 ) ↦ ( 𝑗 fClus ( ( ∪ 𝑗 FilMap 𝑔 ) ‘ 𝑓 ) ) ) ) |