| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfne |
⊢ Fne |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
vy |
⊢ 𝑦 |
| 3 |
1
|
cv |
⊢ 𝑥 |
| 4 |
3
|
cuni |
⊢ ∪ 𝑥 |
| 5 |
2
|
cv |
⊢ 𝑦 |
| 6 |
5
|
cuni |
⊢ ∪ 𝑦 |
| 7 |
4 6
|
wceq |
⊢ ∪ 𝑥 = ∪ 𝑦 |
| 8 |
|
vz |
⊢ 𝑧 |
| 9 |
8
|
cv |
⊢ 𝑧 |
| 10 |
9
|
cpw |
⊢ 𝒫 𝑧 |
| 11 |
5 10
|
cin |
⊢ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 12 |
11
|
cuni |
⊢ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 13 |
9 12
|
wss |
⊢ 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 14 |
13 8 3
|
wral |
⊢ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) |
| 15 |
7 14
|
wa |
⊢ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) |
| 16 |
15 1 2
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) } |
| 17 |
0 16
|
wceq |
⊢ Fne = { 〈 𝑥 , 𝑦 〉 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑧 ∈ 𝑥 𝑧 ⊆ ∪ ( 𝑦 ∩ 𝒫 𝑧 ) ) } |