Metamath Proof Explorer


Definition df-fne

Description: Define the fineness relation for covers. (Contributed by Jeff Hankins, 28-Sep-2009)

Ref Expression
Assertion df-fne Fne = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 = 𝑦 ∧ ∀ 𝑧𝑥 𝑧 ( 𝑦 ∩ 𝒫 𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfne Fne
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 3 cuni 𝑥
5 2 cv 𝑦
6 5 cuni 𝑦
7 4 6 wceq 𝑥 = 𝑦
8 vz 𝑧
9 8 cv 𝑧
10 9 cpw 𝒫 𝑧
11 5 10 cin ( 𝑦 ∩ 𝒫 𝑧 )
12 11 cuni ( 𝑦 ∩ 𝒫 𝑧 )
13 9 12 wss 𝑧 ( 𝑦 ∩ 𝒫 𝑧 )
14 13 8 3 wral 𝑧𝑥 𝑧 ( 𝑦 ∩ 𝒫 𝑧 )
15 7 14 wa ( 𝑥 = 𝑦 ∧ ∀ 𝑧𝑥 𝑧 ( 𝑦 ∩ 𝒫 𝑧 ) )
16 15 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 = 𝑦 ∧ ∀ 𝑧𝑥 𝑧 ( 𝑦 ∩ 𝒫 𝑧 ) ) }
17 0 16 wceq Fne = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 = 𝑦 ∧ ∀ 𝑧𝑥 𝑧 ( 𝑦 ∩ 𝒫 𝑧 ) ) }