Metamath Proof Explorer


Definition df-ga

Description: Define the class of all group actions. A group G acts on a set S if a permutation on S is associated with every element of G in such a way that the identity permutation on S is associated with the neutral element of G , and the composition of the permutations associated with two elements of G is identical with the permutation associated with the composition of these two elements (in the same order) in the group G . (Contributed by Jeff Hankins, 10-Aug-2009)

Ref Expression
Assertion df-ga GrpAct = ( 𝑔 ∈ Grp , 𝑠 ∈ V ↦ ( Base ‘ 𝑔 ) / 𝑏 { 𝑚 ∈ ( 𝑠m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥𝑠 ( ( ( 0g𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑏𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cga GrpAct
1 vg 𝑔
2 cgrp Grp
3 vs 𝑠
4 cvv V
5 cbs Base
6 1 cv 𝑔
7 6 5 cfv ( Base ‘ 𝑔 )
8 vb 𝑏
9 vm 𝑚
10 3 cv 𝑠
11 cmap m
12 8 cv 𝑏
13 12 10 cxp ( 𝑏 × 𝑠 )
14 10 13 11 co ( 𝑠m ( 𝑏 × 𝑠 ) )
15 vx 𝑥
16 c0g 0g
17 6 16 cfv ( 0g𝑔 )
18 9 cv 𝑚
19 15 cv 𝑥
20 17 19 18 co ( ( 0g𝑔 ) 𝑚 𝑥 )
21 20 19 wceq ( ( 0g𝑔 ) 𝑚 𝑥 ) = 𝑥
22 vy 𝑦
23 vz 𝑧
24 22 cv 𝑦
25 cplusg +g
26 6 25 cfv ( +g𝑔 )
27 23 cv 𝑧
28 24 27 26 co ( 𝑦 ( +g𝑔 ) 𝑧 )
29 28 19 18 co ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 )
30 27 19 18 co ( 𝑧 𝑚 𝑥 )
31 24 30 18 co ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) )
32 29 31 wceq ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) )
33 32 23 12 wral 𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) )
34 33 22 12 wral 𝑦𝑏𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) )
35 21 34 wa ( ( ( 0g𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑏𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) )
36 35 15 10 wral 𝑥𝑠 ( ( ( 0g𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑏𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) )
37 36 9 14 crab { 𝑚 ∈ ( 𝑠m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥𝑠 ( ( ( 0g𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑏𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) }
38 8 7 37 csb ( Base ‘ 𝑔 ) / 𝑏 { 𝑚 ∈ ( 𝑠m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥𝑠 ( ( ( 0g𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑏𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) }
39 1 3 2 4 38 cmpo ( 𝑔 ∈ Grp , 𝑠 ∈ V ↦ ( Base ‘ 𝑔 ) / 𝑏 { 𝑚 ∈ ( 𝑠m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥𝑠 ( ( ( 0g𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑏𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } )
40 0 39 wceq GrpAct = ( 𝑔 ∈ Grp , 𝑠 ∈ V ↦ ( Base ‘ 𝑔 ) / 𝑏 { 𝑚 ∈ ( 𝑠m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥𝑠 ( ( ( 0g𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦𝑏𝑧𝑏 ( ( 𝑦 ( +g𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } )