| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cga |
⊢ GrpAct |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cgrp |
⊢ Grp |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
cvv |
⊢ V |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑔 |
| 7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 8 |
|
vb |
⊢ 𝑏 |
| 9 |
|
vm |
⊢ 𝑚 |
| 10 |
3
|
cv |
⊢ 𝑠 |
| 11 |
|
cmap |
⊢ ↑m |
| 12 |
8
|
cv |
⊢ 𝑏 |
| 13 |
12 10
|
cxp |
⊢ ( 𝑏 × 𝑠 ) |
| 14 |
10 13 11
|
co |
⊢ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) |
| 15 |
|
vx |
⊢ 𝑥 |
| 16 |
|
c0g |
⊢ 0g |
| 17 |
6 16
|
cfv |
⊢ ( 0g ‘ 𝑔 ) |
| 18 |
9
|
cv |
⊢ 𝑚 |
| 19 |
15
|
cv |
⊢ 𝑥 |
| 20 |
17 19 18
|
co |
⊢ ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) |
| 21 |
20 19
|
wceq |
⊢ ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 |
| 22 |
|
vy |
⊢ 𝑦 |
| 23 |
|
vz |
⊢ 𝑧 |
| 24 |
22
|
cv |
⊢ 𝑦 |
| 25 |
|
cplusg |
⊢ +g |
| 26 |
6 25
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
| 27 |
23
|
cv |
⊢ 𝑧 |
| 28 |
24 27 26
|
co |
⊢ ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) |
| 29 |
28 19 18
|
co |
⊢ ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) |
| 30 |
27 19 18
|
co |
⊢ ( 𝑧 𝑚 𝑥 ) |
| 31 |
24 30 18
|
co |
⊢ ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) |
| 32 |
29 31
|
wceq |
⊢ ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) |
| 33 |
32 23 12
|
wral |
⊢ ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) |
| 34 |
33 22 12
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) |
| 35 |
21 34
|
wa |
⊢ ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) |
| 36 |
35 15 10
|
wral |
⊢ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) |
| 37 |
36 9 14
|
crab |
⊢ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } |
| 38 |
8 7 37
|
csb |
⊢ ⦋ ( Base ‘ 𝑔 ) / 𝑏 ⦌ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } |
| 39 |
1 3 2 4 38
|
cmpo |
⊢ ( 𝑔 ∈ Grp , 𝑠 ∈ V ↦ ⦋ ( Base ‘ 𝑔 ) / 𝑏 ⦌ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |
| 40 |
0 39
|
wceq |
⊢ GrpAct = ( 𝑔 ∈ Grp , 𝑠 ∈ V ↦ ⦋ ( Base ‘ 𝑔 ) / 𝑏 ⦌ { 𝑚 ∈ ( 𝑠 ↑m ( 𝑏 × 𝑠 ) ) ∣ ∀ 𝑥 ∈ 𝑠 ( ( ( 0g ‘ 𝑔 ) 𝑚 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( ( 𝑦 ( +g ‘ 𝑔 ) 𝑧 ) 𝑚 𝑥 ) = ( 𝑦 𝑚 ( 𝑧 𝑚 𝑥 ) ) ) } ) |