Description: Function mapping a set to the class of all internal (binary) operations for this set. (Contributed by AV, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-intop | ⊢ intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cintop | ⊢ intOp | |
| 1 | vm | ⊢ 𝑚 | |
| 2 | cvv | ⊢ V | |
| 3 | vn | ⊢ 𝑛 | |
| 4 | 3 | cv | ⊢ 𝑛 | 
| 5 | cmap | ⊢ ↑m | |
| 6 | 1 | cv | ⊢ 𝑚 | 
| 7 | 6 6 | cxp | ⊢ ( 𝑚 × 𝑚 ) | 
| 8 | 4 7 5 | co | ⊢ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) | 
| 9 | 1 3 2 2 8 | cmpo | ⊢ ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) | 
| 10 | 0 9 | wceq | ⊢ intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) |