Metamath Proof Explorer


Definition df-intop

Description: Function mapping a set to the class of all internal (binary) operations for this set. (Contributed by AV, 20-Jan-2020)

Ref Expression
Assertion df-intop intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛m ( 𝑚 × 𝑚 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cintop intOp
1 vm 𝑚
2 cvv V
3 vn 𝑛
4 3 cv 𝑛
5 cmap m
6 1 cv 𝑚
7 6 6 cxp ( 𝑚 × 𝑚 )
8 4 7 5 co ( 𝑛m ( 𝑚 × 𝑚 ) )
9 1 3 2 2 8 cmpo ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛m ( 𝑚 × 𝑚 ) ) )
10 0 9 wceq intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛m ( 𝑚 × 𝑚 ) ) )