Description: Function mapping a set to the class of all internal (binary) operations for this set. (Contributed by AV, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-intop | ⊢ intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cintop | ⊢ intOp | |
1 | vm | ⊢ 𝑚 | |
2 | cvv | ⊢ V | |
3 | vn | ⊢ 𝑛 | |
4 | 3 | cv | ⊢ 𝑛 |
5 | cmap | ⊢ ↑m | |
6 | 1 | cv | ⊢ 𝑚 |
7 | 6 6 | cxp | ⊢ ( 𝑚 × 𝑚 ) |
8 | 4 7 5 | co | ⊢ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) |
9 | 1 3 2 2 8 | cmpo | ⊢ ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) |
10 | 0 9 | wceq | ⊢ intOp = ( 𝑚 ∈ V , 𝑛 ∈ V ↦ ( 𝑛 ↑m ( 𝑚 × 𝑚 ) ) ) |