Metamath Proof Explorer


Definition df-laut

Description: Define set of lattice autoisomorphisms. (Contributed by NM, 11-May-2012)

Ref Expression
Assertion df-laut LAut = ( 𝑘 ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 claut LAut
1 vk 𝑘
2 cvv V
3 vf 𝑓
4 3 cv 𝑓
5 cbs Base
6 1 cv 𝑘
7 6 5 cfv ( Base ‘ 𝑘 )
8 7 7 4 wf1o 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 )
9 vx 𝑥
10 vy 𝑦
11 9 cv 𝑥
12 cple le
13 6 12 cfv ( le ‘ 𝑘 )
14 10 cv 𝑦
15 11 14 13 wbr 𝑥 ( le ‘ 𝑘 ) 𝑦
16 11 4 cfv ( 𝑓𝑥 )
17 14 4 cfv ( 𝑓𝑦 )
18 16 17 13 wbr ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 )
19 15 18 wb ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 ) )
20 19 10 7 wral 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 ) )
21 20 9 7 wral 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 ) )
22 8 21 wa ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 ) ) )
23 22 3 cab { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 ) ) ) }
24 1 2 23 cmpt ( 𝑘 ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 ) ) ) } )
25 0 24 wceq LAut = ( 𝑘 ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓𝑥 ) ( le ‘ 𝑘 ) ( 𝑓𝑦 ) ) ) } )