| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clbs |
⊢ LBasis |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vb |
⊢ 𝑏 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑤 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 |
|
clspn |
⊢ LSpan |
| 9 |
5 8
|
cfv |
⊢ ( LSpan ‘ 𝑤 ) |
| 10 |
|
vn |
⊢ 𝑛 |
| 11 |
|
csca |
⊢ Scalar |
| 12 |
5 11
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
| 13 |
|
vs |
⊢ 𝑠 |
| 14 |
10
|
cv |
⊢ 𝑛 |
| 15 |
3
|
cv |
⊢ 𝑏 |
| 16 |
15 14
|
cfv |
⊢ ( 𝑛 ‘ 𝑏 ) |
| 17 |
16 6
|
wceq |
⊢ ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) |
| 18 |
|
vx |
⊢ 𝑥 |
| 19 |
|
vy |
⊢ 𝑦 |
| 20 |
13
|
cv |
⊢ 𝑠 |
| 21 |
20 4
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
| 22 |
|
c0g |
⊢ 0g |
| 23 |
20 22
|
cfv |
⊢ ( 0g ‘ 𝑠 ) |
| 24 |
23
|
csn |
⊢ { ( 0g ‘ 𝑠 ) } |
| 25 |
21 24
|
cdif |
⊢ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) |
| 26 |
19
|
cv |
⊢ 𝑦 |
| 27 |
|
cvsca |
⊢ ·𝑠 |
| 28 |
5 27
|
cfv |
⊢ ( ·𝑠 ‘ 𝑤 ) |
| 29 |
18
|
cv |
⊢ 𝑥 |
| 30 |
26 29 28
|
co |
⊢ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) |
| 31 |
29
|
csn |
⊢ { 𝑥 } |
| 32 |
15 31
|
cdif |
⊢ ( 𝑏 ∖ { 𝑥 } ) |
| 33 |
32 14
|
cfv |
⊢ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 34 |
30 33
|
wcel |
⊢ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 35 |
34
|
wn |
⊢ ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 36 |
35 19 25
|
wral |
⊢ ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 37 |
36 18 15
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) |
| 38 |
17 37
|
wa |
⊢ ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) |
| 39 |
38 13 12
|
wsbc |
⊢ [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) |
| 40 |
39 10 9
|
wsbc |
⊢ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) |
| 41 |
40 3 7
|
crab |
⊢ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } |
| 42 |
1 2 41
|
cmpt |
⊢ ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |
| 43 |
0 42
|
wceq |
⊢ LBasis = ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛 ‘ 𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g ‘ 𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠 ‘ 𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } ) |