Metamath Proof Explorer


Definition df-limc

Description: Define the set of limits of a complex function at a point. Under normal circumstances, this will be a singleton or empty, depending on whether the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion df-limc lim = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦[ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓𝑧 ) ) ) ∈ ( ( ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 climc lim
1 vf 𝑓
2 cc
3 cpm pm
4 2 2 3 co ( ℂ ↑pm ℂ )
5 vx 𝑥
6 vy 𝑦
7 ctopn TopOpen
8 ccnfld fld
9 8 7 cfv ( TopOpen ‘ ℂfld )
10 vj 𝑗
11 vz 𝑧
12 1 cv 𝑓
13 12 cdm dom 𝑓
14 5 cv 𝑥
15 14 csn { 𝑥 }
16 13 15 cun ( dom 𝑓 ∪ { 𝑥 } )
17 11 cv 𝑧
18 17 14 wceq 𝑧 = 𝑥
19 6 cv 𝑦
20 17 12 cfv ( 𝑓𝑧 )
21 18 19 20 cif if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓𝑧 ) )
22 11 16 21 cmpt ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓𝑧 ) ) )
23 10 cv 𝑗
24 crest t
25 23 16 24 co ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) )
26 ccnp CnP
27 25 23 26 co ( ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 )
28 14 27 cfv ( ( ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 )
29 22 28 wcel ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓𝑧 ) ) ) ∈ ( ( ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 )
30 29 10 9 wsbc [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓𝑧 ) ) ) ∈ ( ( ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 )
31 30 6 cab { 𝑦[ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓𝑧 ) ) ) ∈ ( ( ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) }
32 1 5 4 2 31 cmpo ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦[ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓𝑧 ) ) ) ∈ ( ( ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } )
33 0 32 wceq lim = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦[ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓𝑧 ) ) ) ∈ ( ( ( 𝑗t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } )