| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clocfin |
⊢ LocFin |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
ctop |
⊢ Top |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
1
|
cv |
⊢ 𝑥 |
| 5 |
4
|
cuni |
⊢ ∪ 𝑥 |
| 6 |
3
|
cv |
⊢ 𝑦 |
| 7 |
6
|
cuni |
⊢ ∪ 𝑦 |
| 8 |
5 7
|
wceq |
⊢ ∪ 𝑥 = ∪ 𝑦 |
| 9 |
|
vp |
⊢ 𝑝 |
| 10 |
|
vn |
⊢ 𝑛 |
| 11 |
9
|
cv |
⊢ 𝑝 |
| 12 |
10
|
cv |
⊢ 𝑛 |
| 13 |
11 12
|
wcel |
⊢ 𝑝 ∈ 𝑛 |
| 14 |
|
vs |
⊢ 𝑠 |
| 15 |
14
|
cv |
⊢ 𝑠 |
| 16 |
15 12
|
cin |
⊢ ( 𝑠 ∩ 𝑛 ) |
| 17 |
|
c0 |
⊢ ∅ |
| 18 |
16 17
|
wne |
⊢ ( 𝑠 ∩ 𝑛 ) ≠ ∅ |
| 19 |
18 14 6
|
crab |
⊢ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } |
| 20 |
|
cfn |
⊢ Fin |
| 21 |
19 20
|
wcel |
⊢ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin |
| 22 |
13 21
|
wa |
⊢ ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
| 23 |
22 10 4
|
wrex |
⊢ ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
| 24 |
23 9 5
|
wral |
⊢ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) |
| 25 |
8 24
|
wa |
⊢ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) |
| 26 |
25 3
|
cab |
⊢ { 𝑦 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } |
| 27 |
1 2 26
|
cmpt |
⊢ ( 𝑥 ∈ Top ↦ { 𝑦 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |
| 28 |
0 27
|
wceq |
⊢ LocFin = ( 𝑥 ∈ Top ↦ { 𝑦 ∣ ( ∪ 𝑥 = ∪ 𝑦 ∧ ∀ 𝑝 ∈ ∪ 𝑥 ∃ 𝑛 ∈ 𝑥 ( 𝑝 ∈ 𝑛 ∧ { 𝑠 ∈ 𝑦 ∣ ( 𝑠 ∩ 𝑛 ) ≠ ∅ } ∈ Fin ) ) } ) |