| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cltb |
⊢ <bag |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vi |
⊢ 𝑖 |
| 4 |
|
vx |
⊢ 𝑥 |
| 5 |
|
vy |
⊢ 𝑦 |
| 6 |
4
|
cv |
⊢ 𝑥 |
| 7 |
5
|
cv |
⊢ 𝑦 |
| 8 |
6 7
|
cpr |
⊢ { 𝑥 , 𝑦 } |
| 9 |
|
vh |
⊢ ℎ |
| 10 |
|
cn0 |
⊢ ℕ0 |
| 11 |
|
cmap |
⊢ ↑m |
| 12 |
3
|
cv |
⊢ 𝑖 |
| 13 |
10 12 11
|
co |
⊢ ( ℕ0 ↑m 𝑖 ) |
| 14 |
9
|
cv |
⊢ ℎ |
| 15 |
14
|
ccnv |
⊢ ◡ ℎ |
| 16 |
|
cn |
⊢ ℕ |
| 17 |
15 16
|
cima |
⊢ ( ◡ ℎ “ ℕ ) |
| 18 |
|
cfn |
⊢ Fin |
| 19 |
17 18
|
wcel |
⊢ ( ◡ ℎ “ ℕ ) ∈ Fin |
| 20 |
19 9 13
|
crab |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 21 |
8 20
|
wss |
⊢ { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 22 |
|
vz |
⊢ 𝑧 |
| 23 |
22
|
cv |
⊢ 𝑧 |
| 24 |
23 6
|
cfv |
⊢ ( 𝑥 ‘ 𝑧 ) |
| 25 |
|
clt |
⊢ < |
| 26 |
23 7
|
cfv |
⊢ ( 𝑦 ‘ 𝑧 ) |
| 27 |
24 26 25
|
wbr |
⊢ ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) |
| 28 |
|
vw |
⊢ 𝑤 |
| 29 |
1
|
cv |
⊢ 𝑟 |
| 30 |
28
|
cv |
⊢ 𝑤 |
| 31 |
23 30 29
|
wbr |
⊢ 𝑧 𝑟 𝑤 |
| 32 |
30 6
|
cfv |
⊢ ( 𝑥 ‘ 𝑤 ) |
| 33 |
30 7
|
cfv |
⊢ ( 𝑦 ‘ 𝑤 ) |
| 34 |
32 33
|
wceq |
⊢ ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) |
| 35 |
31 34
|
wi |
⊢ ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
| 36 |
35 28 12
|
wral |
⊢ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) |
| 37 |
27 36
|
wa |
⊢ ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 38 |
37 22 12
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) |
| 39 |
21 38
|
wa |
⊢ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 40 |
39 4 5
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } |
| 41 |
1 3 2 2 40
|
cmpo |
⊢ ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |
| 42 |
0 41
|
wceq |
⊢ <bag = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ∧ ∃ 𝑧 ∈ 𝑖 ( ( 𝑥 ‘ 𝑧 ) < ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑖 ( 𝑧 𝑟 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) ) } ) |