| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmadu |
⊢ maAdju |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vr |
⊢ 𝑟 |
| 4 |
|
vm |
⊢ 𝑚 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑛 |
| 7 |
|
cmat |
⊢ Mat |
| 8 |
3
|
cv |
⊢ 𝑟 |
| 9 |
6 8 7
|
co |
⊢ ( 𝑛 Mat 𝑟 ) |
| 10 |
9 5
|
cfv |
⊢ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) |
| 11 |
|
vi |
⊢ 𝑖 |
| 12 |
|
vj |
⊢ 𝑗 |
| 13 |
|
cmdat |
⊢ maDet |
| 14 |
6 8 13
|
co |
⊢ ( 𝑛 maDet 𝑟 ) |
| 15 |
|
vk |
⊢ 𝑘 |
| 16 |
|
vl |
⊢ 𝑙 |
| 17 |
15
|
cv |
⊢ 𝑘 |
| 18 |
12
|
cv |
⊢ 𝑗 |
| 19 |
17 18
|
wceq |
⊢ 𝑘 = 𝑗 |
| 20 |
16
|
cv |
⊢ 𝑙 |
| 21 |
11
|
cv |
⊢ 𝑖 |
| 22 |
20 21
|
wceq |
⊢ 𝑙 = 𝑖 |
| 23 |
|
cur |
⊢ 1r |
| 24 |
8 23
|
cfv |
⊢ ( 1r ‘ 𝑟 ) |
| 25 |
|
c0g |
⊢ 0g |
| 26 |
8 25
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
| 27 |
22 24 26
|
cif |
⊢ if ( 𝑙 = 𝑖 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) |
| 28 |
4
|
cv |
⊢ 𝑚 |
| 29 |
17 20 28
|
co |
⊢ ( 𝑘 𝑚 𝑙 ) |
| 30 |
19 27 29
|
cif |
⊢ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑘 𝑚 𝑙 ) ) |
| 31 |
15 16 6 6 30
|
cmpo |
⊢ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑘 𝑚 𝑙 ) ) ) |
| 32 |
31 14
|
cfv |
⊢ ( ( 𝑛 maDet 𝑟 ) ‘ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑘 𝑚 𝑙 ) ) ) ) |
| 33 |
11 12 6 6 32
|
cmpo |
⊢ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ ( ( 𝑛 maDet 𝑟 ) ‘ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑘 𝑚 𝑙 ) ) ) ) ) |
| 34 |
4 10 33
|
cmpt |
⊢ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ ( ( 𝑛 maDet 𝑟 ) ‘ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑘 𝑚 𝑙 ) ) ) ) ) ) |
| 35 |
1 3 2 2 34
|
cmpo |
⊢ ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ ( ( 𝑛 maDet 𝑟 ) ‘ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑘 𝑚 𝑙 ) ) ) ) ) ) ) |
| 36 |
0 35
|
wceq |
⊢ maAdju = ( 𝑛 ∈ V , 𝑟 ∈ V ↦ ( 𝑚 ∈ ( Base ‘ ( 𝑛 Mat 𝑟 ) ) ↦ ( 𝑖 ∈ 𝑛 , 𝑗 ∈ 𝑛 ↦ ( ( 𝑛 maDet 𝑟 ) ‘ ( 𝑘 ∈ 𝑛 , 𝑙 ∈ 𝑛 ↦ if ( 𝑘 = 𝑗 , if ( 𝑙 = 𝑖 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) , ( 𝑘 𝑚 𝑙 ) ) ) ) ) ) ) |