Metamath Proof Explorer
Description: Define the set of unambiguous formal systems. (Contributed by Mario
Carneiro, 14-Jul-2016)
|
|
Ref |
Expression |
|
Assertion |
df-mufs |
⊢ mUFS = { 𝑡 ∈ mGFS ∣ Fun ( mST ‘ 𝑡 ) } |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cmufs |
⊢ mUFS |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cmgfs |
⊢ mGFS |
3 |
|
cmst |
⊢ mST |
4 |
1
|
cv |
⊢ 𝑡 |
5 |
4 3
|
cfv |
⊢ ( mST ‘ 𝑡 ) |
6 |
5
|
wfun |
⊢ Fun ( mST ‘ 𝑡 ) |
7 |
6 1 2
|
crab |
⊢ { 𝑡 ∈ mGFS ∣ Fun ( mST ‘ 𝑡 ) } |
8 |
0 7
|
wceq |
⊢ mUFS = { 𝑡 ∈ mGFS ∣ Fun ( mST ‘ 𝑡 ) } |