| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmzpcl |
⊢ mzPolyCld |
| 1 |
|
vv |
⊢ 𝑣 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vp |
⊢ 𝑝 |
| 4 |
|
cz |
⊢ ℤ |
| 5 |
|
cmap |
⊢ ↑m |
| 6 |
1
|
cv |
⊢ 𝑣 |
| 7 |
4 6 5
|
co |
⊢ ( ℤ ↑m 𝑣 ) |
| 8 |
4 7 5
|
co |
⊢ ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) |
| 9 |
8
|
cpw |
⊢ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) |
| 10 |
|
vi |
⊢ 𝑖 |
| 11 |
10
|
cv |
⊢ 𝑖 |
| 12 |
11
|
csn |
⊢ { 𝑖 } |
| 13 |
7 12
|
cxp |
⊢ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) |
| 14 |
3
|
cv |
⊢ 𝑝 |
| 15 |
13 14
|
wcel |
⊢ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 |
| 16 |
15 10 4
|
wral |
⊢ ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 |
| 17 |
|
vj |
⊢ 𝑗 |
| 18 |
|
vx |
⊢ 𝑥 |
| 19 |
18
|
cv |
⊢ 𝑥 |
| 20 |
17
|
cv |
⊢ 𝑗 |
| 21 |
20 19
|
cfv |
⊢ ( 𝑥 ‘ 𝑗 ) |
| 22 |
18 7 21
|
cmpt |
⊢ ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) |
| 23 |
22 14
|
wcel |
⊢ ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 |
| 24 |
23 17 6
|
wral |
⊢ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 |
| 25 |
16 24
|
wa |
⊢ ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) |
| 26 |
|
vf |
⊢ 𝑓 |
| 27 |
|
vg |
⊢ 𝑔 |
| 28 |
26
|
cv |
⊢ 𝑓 |
| 29 |
|
caddc |
⊢ + |
| 30 |
29
|
cof |
⊢ ∘f + |
| 31 |
27
|
cv |
⊢ 𝑔 |
| 32 |
28 31 30
|
co |
⊢ ( 𝑓 ∘f + 𝑔 ) |
| 33 |
32 14
|
wcel |
⊢ ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 |
| 34 |
|
cmul |
⊢ · |
| 35 |
34
|
cof |
⊢ ∘f · |
| 36 |
28 31 35
|
co |
⊢ ( 𝑓 ∘f · 𝑔 ) |
| 37 |
36 14
|
wcel |
⊢ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 |
| 38 |
33 37
|
wa |
⊢ ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) |
| 39 |
38 27 14
|
wral |
⊢ ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) |
| 40 |
39 26 14
|
wral |
⊢ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) |
| 41 |
25 40
|
wa |
⊢ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) |
| 42 |
41 3 9
|
crab |
⊢ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } |
| 43 |
1 2 42
|
cmpt |
⊢ ( 𝑣 ∈ V ↦ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } ) |
| 44 |
0 43
|
wceq |
⊢ mzPolyCld = ( 𝑣 ∈ V ↦ { 𝑝 ∈ 𝒫 ( ℤ ↑m ( ℤ ↑m 𝑣 ) ) ∣ ( ( ∀ 𝑖 ∈ ℤ ( ( ℤ ↑m 𝑣 ) × { 𝑖 } ) ∈ 𝑝 ∧ ∀ 𝑗 ∈ 𝑣 ( 𝑥 ∈ ( ℤ ↑m 𝑣 ) ↦ ( 𝑥 ‘ 𝑗 ) ) ∈ 𝑝 ) ∧ ∀ 𝑓 ∈ 𝑝 ∀ 𝑔 ∈ 𝑝 ( ( 𝑓 ∘f + 𝑔 ) ∈ 𝑝 ∧ ( 𝑓 ∘f · 𝑔 ) ∈ 𝑝 ) ) } ) |