| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cnacs |
⊢ NoeACS |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vc |
⊢ 𝑐 |
| 4 |
|
cacs |
⊢ ACS |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
5 4
|
cfv |
⊢ ( ACS ‘ 𝑥 ) |
| 7 |
|
vs |
⊢ 𝑠 |
| 8 |
3
|
cv |
⊢ 𝑐 |
| 9 |
|
vg |
⊢ 𝑔 |
| 10 |
5
|
cpw |
⊢ 𝒫 𝑥 |
| 11 |
|
cfn |
⊢ Fin |
| 12 |
10 11
|
cin |
⊢ ( 𝒫 𝑥 ∩ Fin ) |
| 13 |
7
|
cv |
⊢ 𝑠 |
| 14 |
|
cmrc |
⊢ mrCls |
| 15 |
8 14
|
cfv |
⊢ ( mrCls ‘ 𝑐 ) |
| 16 |
9
|
cv |
⊢ 𝑔 |
| 17 |
16 15
|
cfv |
⊢ ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) |
| 18 |
13 17
|
wceq |
⊢ 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) |
| 19 |
18 9 12
|
wrex |
⊢ ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) |
| 20 |
19 7 8
|
wral |
⊢ ∀ 𝑠 ∈ 𝑐 ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) |
| 21 |
20 3 6
|
crab |
⊢ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠 ∈ 𝑐 ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } |
| 22 |
1 2 21
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠 ∈ 𝑐 ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } ) |
| 23 |
0 22
|
wceq |
⊢ NoeACS = ( 𝑥 ∈ V ↦ { 𝑐 ∈ ( ACS ‘ 𝑥 ) ∣ ∀ 𝑠 ∈ 𝑐 ∃ 𝑔 ∈ ( 𝒫 𝑥 ∩ Fin ) 𝑠 = ( ( mrCls ‘ 𝑐 ) ‘ 𝑔 ) } ) |