Metamath Proof Explorer


Definition df-nmoo

Description: Define the norm of an operator between two normed complex vector spaces. This definition produces an operator norm function for each pair of vector spaces <. u , w >. . Based on definition of linear operator norm in AkhiezerGlazman p. 39, although we define it for all operators for convenience. It isn't necessarily meaningful for nonlinear operators, since it doesn't take into account operator values at vectors with norm greater than 1. See Equation 2 of Kreyszig p. 92 for a definition that does (although it ignores the value at the zero vector). However, operator norms are rarely if ever used for nonlinear operators. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-nmoo normOpOLD = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnmoo normOpOLD
1 vu 𝑢
2 cnv NrmCVec
3 vw 𝑤
4 vt 𝑡
5 cba BaseSet
6 3 cv 𝑤
7 6 5 cfv ( BaseSet ‘ 𝑤 )
8 cmap m
9 1 cv 𝑢
10 9 5 cfv ( BaseSet ‘ 𝑢 )
11 7 10 8 co ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) )
12 vx 𝑥
13 vz 𝑧
14 cnmcv normCV
15 9 14 cfv ( normCV𝑢 )
16 13 cv 𝑧
17 16 15 cfv ( ( normCV𝑢 ) ‘ 𝑧 )
18 cle
19 c1 1
20 17 19 18 wbr ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1
21 12 cv 𝑥
22 6 14 cfv ( normCV𝑤 )
23 4 cv 𝑡
24 16 23 cfv ( 𝑡𝑧 )
25 24 22 cfv ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) )
26 21 25 wceq 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) )
27 20 26 wa ( ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) ) )
28 27 13 10 wrex 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) ) )
29 28 12 cab { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) ) ) }
30 cxr *
31 clt <
32 29 30 31 csup sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < )
33 4 11 32 cmpt ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) )
34 1 3 2 2 33 cmpo ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) ) )
35 0 34 wceq normOpOLD = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ↦ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( ( ( normCV𝑢 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV𝑤 ) ‘ ( 𝑡𝑧 ) ) ) } , ℝ* , < ) ) )