Step |
Hyp |
Ref |
Expression |
0 |
|
cpgp |
⊢ pGrp |
1 |
|
vp |
⊢ 𝑝 |
2 |
|
vg |
⊢ 𝑔 |
3 |
1
|
cv |
⊢ 𝑝 |
4 |
|
cprime |
⊢ ℙ |
5 |
3 4
|
wcel |
⊢ 𝑝 ∈ ℙ |
6 |
2
|
cv |
⊢ 𝑔 |
7 |
|
cgrp |
⊢ Grp |
8 |
6 7
|
wcel |
⊢ 𝑔 ∈ Grp |
9 |
5 8
|
wa |
⊢ ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) |
10 |
|
vx |
⊢ 𝑥 |
11 |
|
cbs |
⊢ Base |
12 |
6 11
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
13 |
|
vn |
⊢ 𝑛 |
14 |
|
cn0 |
⊢ ℕ0 |
15 |
|
cod |
⊢ od |
16 |
6 15
|
cfv |
⊢ ( od ‘ 𝑔 ) |
17 |
10
|
cv |
⊢ 𝑥 |
18 |
17 16
|
cfv |
⊢ ( ( od ‘ 𝑔 ) ‘ 𝑥 ) |
19 |
|
cexp |
⊢ ↑ |
20 |
13
|
cv |
⊢ 𝑛 |
21 |
3 20 19
|
co |
⊢ ( 𝑝 ↑ 𝑛 ) |
22 |
18 21
|
wceq |
⊢ ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
23 |
22 13 14
|
wrex |
⊢ ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
24 |
23 10 12
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) |
25 |
9 24
|
wa |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) |
26 |
25 1 2
|
copab |
⊢ { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } |
27 |
0 26
|
wceq |
⊢ pGrp = { 〈 𝑝 , 𝑔 〉 ∣ ( ( 𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑔 ) ∃ 𝑛 ∈ ℕ0 ( ( od ‘ 𝑔 ) ‘ 𝑥 ) = ( 𝑝 ↑ 𝑛 ) ) } |