Description: Define the algebra of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ply1 | ⊢ Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpl1 | ⊢ Poly1 | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | cps1 | ⊢ PwSer1 | |
| 4 | 1 | cv | ⊢ 𝑟 |
| 5 | 4 3 | cfv | ⊢ ( PwSer1 ‘ 𝑟 ) |
| 6 | cress | ⊢ ↾s | |
| 7 | cbs | ⊢ Base | |
| 8 | c1o | ⊢ 1o | |
| 9 | cmpl | ⊢ mPoly | |
| 10 | 8 4 9 | co | ⊢ ( 1o mPoly 𝑟 ) |
| 11 | 10 7 | cfv | ⊢ ( Base ‘ ( 1o mPoly 𝑟 ) ) |
| 12 | 5 11 6 | co | ⊢ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) |
| 13 | 1 2 12 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) |
| 14 | 0 13 | wceq | ⊢ Poly1 = ( 𝑟 ∈ V ↦ ( ( PwSer1 ‘ 𝑟 ) ↾s ( Base ‘ ( 1o mPoly 𝑟 ) ) ) ) |