| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpmap |
⊢ pmap |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
va |
⊢ 𝑎 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ 𝑘 |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
| 7 |
|
vp |
⊢ 𝑝 |
| 8 |
|
catm |
⊢ Atoms |
| 9 |
5 8
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
| 10 |
7
|
cv |
⊢ 𝑝 |
| 11 |
|
cple |
⊢ le |
| 12 |
5 11
|
cfv |
⊢ ( le ‘ 𝑘 ) |
| 13 |
3
|
cv |
⊢ 𝑎 |
| 14 |
10 13 12
|
wbr |
⊢ 𝑝 ( le ‘ 𝑘 ) 𝑎 |
| 15 |
14 7 9
|
crab |
⊢ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } |
| 16 |
3 6 15
|
cmpt |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) |
| 17 |
1 2 16
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) |
| 18 |
0 17
|
wceq |
⊢ pmap = ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) |