Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
df-shs
Metamath Proof Explorer
Description: Define subspace sum in SH . See shsval , shsval2i , and
shsval3i for its value. (Contributed by NM , 16-Oct-1999)
(New usage is discouraged.)
Ref
Expression
Assertion
df-shs
⊢ +ℋ = ( 𝑥 ∈ S ℋ , 𝑦 ∈ S ℋ ↦ ( +ℎ “ ( 𝑥 × 𝑦 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cph
⊢ +ℋ
1
vx
⊢ 𝑥
2
csh
⊢ S ℋ
3
vy
⊢ 𝑦
4
cva
⊢ +ℎ
5
1
cv
⊢ 𝑥
6
3
cv
⊢ 𝑦
7
5 6
cxp
⊢ ( 𝑥 × 𝑦 )
8
4 7
cima
⊢ ( +ℎ “ ( 𝑥 × 𝑦 ) )
9
1 3 2 2 8
cmpo
⊢ ( 𝑥 ∈ S ℋ , 𝑦 ∈ S ℋ ↦ ( +ℎ “ ( 𝑥 × 𝑦 ) ) )
10
0 9
wceq
⊢ +ℋ = ( 𝑥 ∈ S ℋ , 𝑦 ∈ S ℋ ↦ ( +ℎ “ ( 𝑥 × 𝑦 ) ) )