Metamath Proof Explorer


Definition df-shs

Description: Define subspace sum in SH . See shsval , shsval2i , and shsval3i for its value. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion df-shs + = ( 𝑥S , 𝑦S ↦ ( + “ ( 𝑥 × 𝑦 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cph +
1 vx 𝑥
2 csh S
3 vy 𝑦
4 cva +
5 1 cv 𝑥
6 3 cv 𝑦
7 5 6 cxp ( 𝑥 × 𝑦 )
8 4 7 cima ( + “ ( 𝑥 × 𝑦 ) )
9 1 3 2 2 8 cmpo ( 𝑥S , 𝑦S ↦ ( + “ ( 𝑥 × 𝑦 ) ) )
10 0 9 wceq + = ( 𝑥S , 𝑦S ↦ ( + “ ( 𝑥 × 𝑦 ) ) )