Metamath Proof Explorer


Definition df-subc

Description: ( SubcatC ) is the set of all the subcategory specifications of the category C . Like df-subg , this is not actually a collection of categories (as in definition 4.1(a) of Adamek p. 48), but only sets which when given operations from the base category (using df-resc ) form a category. All the objects and all the morphisms of the subcategory belong to the supercategory. The identity of an object, the domain and the codomain of a morphism are the same in the subcategory and the supercategory. The composition of the subcategory is a restriction of the composition of the supercategory. (Contributed by FL, 17-Sep-2009) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Assertion df-subc Subcat = ( 𝑐 ∈ Cat ↦ { ∣ ( cat ( Homf𝑐 ) ∧ [ dom dom / 𝑠 ]𝑥𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 ) ∧ ∀ 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csubc Subcat
1 vc 𝑐
2 ccat Cat
3 vh
4 3 cv
5 cssc cat
6 chomf Homf
7 1 cv 𝑐
8 7 6 cfv ( Homf𝑐 )
9 4 8 5 wbr cat ( Homf𝑐 )
10 4 cdm dom
11 10 cdm dom dom
12 vs 𝑠
13 vx 𝑥
14 12 cv 𝑠
15 ccid Id
16 7 15 cfv ( Id ‘ 𝑐 )
17 13 cv 𝑥
18 17 16 cfv ( ( Id ‘ 𝑐 ) ‘ 𝑥 )
19 17 17 4 co ( 𝑥 𝑥 )
20 18 19 wcel ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 )
21 vy 𝑦
22 vz 𝑧
23 vf 𝑓
24 21 cv 𝑦
25 17 24 4 co ( 𝑥 𝑦 )
26 vg 𝑔
27 22 cv 𝑧
28 24 27 4 co ( 𝑦 𝑧 )
29 26 cv 𝑔
30 17 24 cop 𝑥 , 𝑦
31 cco comp
32 7 31 cfv ( comp ‘ 𝑐 )
33 30 27 32 co ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 )
34 23 cv 𝑓
35 29 34 33 co ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 )
36 17 27 4 co ( 𝑥 𝑧 )
37 35 36 wcel ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 )
38 37 26 28 wral 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 )
39 38 23 25 wral 𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 )
40 39 22 14 wral 𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 )
41 40 21 14 wral 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 )
42 20 41 wa ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 ) ∧ ∀ 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 ) )
43 42 13 14 wral 𝑥𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 ) ∧ ∀ 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 ) )
44 43 12 11 wsbc [ dom dom / 𝑠 ]𝑥𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 ) ∧ ∀ 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 ) )
45 9 44 wa ( cat ( Homf𝑐 ) ∧ [ dom dom / 𝑠 ]𝑥𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 ) ∧ ∀ 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 ) ) )
46 45 3 cab { ∣ ( cat ( Homf𝑐 ) ∧ [ dom dom / 𝑠 ]𝑥𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 ) ∧ ∀ 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 ) ) ) }
47 1 2 46 cmpt ( 𝑐 ∈ Cat ↦ { ∣ ( cat ( Homf𝑐 ) ∧ [ dom dom / 𝑠 ]𝑥𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 ) ∧ ∀ 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 ) ) ) } )
48 0 47 wceq Subcat = ( 𝑐 ∈ Cat ↦ { ∣ ( cat ( Homf𝑐 ) ∧ [ dom dom / 𝑠 ]𝑥𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 𝑥 ) ∧ ∀ 𝑦𝑠𝑧𝑠𝑓 ∈ ( 𝑥 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝑧 ) ) ) } )