Description: Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tx | ⊢ ×t = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctx | ⊢ ×t | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | ctg | ⊢ topGen | |
| 5 | vx | ⊢ 𝑥 | |
| 6 | 1 | cv | ⊢ 𝑟 |
| 7 | vy | ⊢ 𝑦 | |
| 8 | 3 | cv | ⊢ 𝑠 |
| 9 | 5 | cv | ⊢ 𝑥 |
| 10 | 7 | cv | ⊢ 𝑦 |
| 11 | 9 10 | cxp | ⊢ ( 𝑥 × 𝑦 ) |
| 12 | 5 7 6 8 11 | cmpo | ⊢ ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) |
| 13 | 12 | crn | ⊢ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) |
| 14 | 13 4 | cfv | ⊢ ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 15 | 1 3 2 2 14 | cmpo | ⊢ ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 16 | 0 15 | wceq | ⊢ ×t = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |