| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cvts |
⊢ vts |
| 1 |
|
vl |
⊢ 𝑙 |
| 2 |
|
cc |
⊢ ℂ |
| 3 |
|
cmap |
⊢ ↑m |
| 4 |
|
cn |
⊢ ℕ |
| 5 |
2 4 3
|
co |
⊢ ( ℂ ↑m ℕ ) |
| 6 |
|
vn |
⊢ 𝑛 |
| 7 |
|
cn0 |
⊢ ℕ0 |
| 8 |
|
vx |
⊢ 𝑥 |
| 9 |
|
va |
⊢ 𝑎 |
| 10 |
|
c1 |
⊢ 1 |
| 11 |
|
cfz |
⊢ ... |
| 12 |
6
|
cv |
⊢ 𝑛 |
| 13 |
10 12 11
|
co |
⊢ ( 1 ... 𝑛 ) |
| 14 |
1
|
cv |
⊢ 𝑙 |
| 15 |
9
|
cv |
⊢ 𝑎 |
| 16 |
15 14
|
cfv |
⊢ ( 𝑙 ‘ 𝑎 ) |
| 17 |
|
cmul |
⊢ · |
| 18 |
|
ce |
⊢ exp |
| 19 |
|
ci |
⊢ i |
| 20 |
|
c2 |
⊢ 2 |
| 21 |
|
cpi |
⊢ π |
| 22 |
20 21 17
|
co |
⊢ ( 2 · π ) |
| 23 |
19 22 17
|
co |
⊢ ( i · ( 2 · π ) ) |
| 24 |
8
|
cv |
⊢ 𝑥 |
| 25 |
15 24 17
|
co |
⊢ ( 𝑎 · 𝑥 ) |
| 26 |
23 25 17
|
co |
⊢ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑥 ) ) |
| 27 |
26 18
|
cfv |
⊢ ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑥 ) ) ) |
| 28 |
16 27 17
|
co |
⊢ ( ( 𝑙 ‘ 𝑎 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑥 ) ) ) ) |
| 29 |
13 28 9
|
csu |
⊢ Σ 𝑎 ∈ ( 1 ... 𝑛 ) ( ( 𝑙 ‘ 𝑎 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑥 ) ) ) ) |
| 30 |
8 2 29
|
cmpt |
⊢ ( 𝑥 ∈ ℂ ↦ Σ 𝑎 ∈ ( 1 ... 𝑛 ) ( ( 𝑙 ‘ 𝑎 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑥 ) ) ) ) ) |
| 31 |
1 6 5 7 30
|
cmpo |
⊢ ( 𝑙 ∈ ( ℂ ↑m ℕ ) , 𝑛 ∈ ℕ0 ↦ ( 𝑥 ∈ ℂ ↦ Σ 𝑎 ∈ ( 1 ... 𝑛 ) ( ( 𝑙 ‘ 𝑎 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑥 ) ) ) ) ) ) |
| 32 |
0 31
|
wceq |
⊢ vts = ( 𝑙 ∈ ( ℂ ↑m ℕ ) , 𝑛 ∈ ℕ0 ↦ ( 𝑥 ∈ ℂ ↦ Σ 𝑎 ∈ ( 1 ... 𝑛 ) ( ( 𝑙 ‘ 𝑎 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑎 · 𝑥 ) ) ) ) ) ) |