| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-bi | ⊢ ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) ) | 
						
							| 2 |  | tru | ⊢ ⊤ | 
						
							| 3 |  | ax-1 | ⊢ ( ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) )  →  ( ( ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) ) )  →  ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) ) ) ) | 
						
							| 4 |  | df-bi | ⊢ ¬  ( ( ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) ) )  →  ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( ¬  ¬  ⊤  →  ¬  ( ( ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) ) )  →  ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) ) ) ) | 
						
							| 6 | 5 | con4i | ⊢ ( ( ( ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) ) )  →  ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) ) )  →  ¬  ⊤ ) | 
						
							| 7 | 6 | a1i | ⊢ ( ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) )  →  ( ( ( ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) ) )  →  ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) ) )  →  ¬  ⊤ ) ) | 
						
							| 8 | 7 | a2i | ⊢ ( ( ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) )  →  ( ( ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) ) )  →  ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) ) ) )  →  ( ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) )  →  ¬  ⊤ ) ) | 
						
							| 9 | 3 8 | ax-mp | ⊢ ( ¬  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) )  →  ¬  ⊤ ) | 
						
							| 10 | 9 | con4i | ⊢ ( ⊤  →  ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) ) ) | 
						
							| 11 | 2 10 | ax-mp | ⊢ ( ¬  ( ( ( 𝜑  ↔  𝜓 )  →  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) )  →  ¬  ( ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) )  →  ( 𝜑  ↔  𝜓 ) ) )  →  ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) ) | 
						
							| 12 | 1 11 | ax-mp | ⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( ( 𝜑  →  𝜓 )  →  ¬  ( 𝜓  →  𝜑 ) ) ) |