Metamath Proof Explorer


Theorem dfdm3

Description: Alternate definition of domain. Definition 6.5(1) of TakeutiZaring p. 24. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfdm3 dom 𝐴 = { 𝑥 ∣ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 }

Proof

Step Hyp Ref Expression
1 df-dm dom 𝐴 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 }
2 df-br ( 𝑥 𝐴 𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝐴 )
3 2 exbii ( ∃ 𝑦 𝑥 𝐴 𝑦 ↔ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 )
4 3 abbii { 𝑥 ∣ ∃ 𝑦 𝑥 𝐴 𝑦 } = { 𝑥 ∣ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 }
5 1 4 eqtri dom 𝐴 = { 𝑥 ∣ ∃ 𝑦𝑥 , 𝑦 ⟩ ∈ 𝐴 }