Metamath Proof Explorer


Theorem dff14a

Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018)

Ref Expression
Assertion dff14a ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 dff13 ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) )
2 con34b ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ¬ 𝑥 = 𝑦 → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) )
3 df-ne ( 𝑥𝑦 ↔ ¬ 𝑥 = 𝑦 )
4 3 bicomi ( ¬ 𝑥 = 𝑦𝑥𝑦 )
5 df-ne ( ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ↔ ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
6 5 bicomi ( ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ↔ ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) )
7 4 6 imbi12i ( ( ¬ 𝑥 = 𝑦 → ¬ ( 𝐹𝑥 ) = ( 𝐹𝑦 ) ) ↔ ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) )
8 2 7 bitri ( ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) )
9 8 2ralbii ( ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) )
10 9 anbi2i ( ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( ( 𝐹𝑥 ) = ( 𝐹𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ) )
11 1 10 bitri ( 𝐹 : 𝐴1-1𝐵 ↔ ( 𝐹 : 𝐴𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦 → ( 𝐹𝑥 ) ≠ ( 𝐹𝑦 ) ) ) )