Metamath Proof Explorer


Theorem dffunsALTV

Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 18-Jul-2021)

Ref Expression
Assertion dffunsALTV FunsALTV = { 𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }

Proof

Step Hyp Ref Expression
1 df-funsALTV FunsALTV = ( Funss ∩ Rels )
2 df-funss Funss = { 𝑓 ∣ ≀ 𝑓 ∈ CnvRefRels }
3 1 2 abeqin FunsALTV = { 𝑓 ∈ Rels ∣ ≀ 𝑓 ∈ CnvRefRels }