Metamath Proof Explorer


Theorem dfsb

Description: Simplify definition df-sb by removing its provable hypothesis. (Contributed by Wolf Lammen, 5-Feb-2026)

Ref Expression
Assertion dfsb ( [ 𝑡 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 sbjust ( ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) )
2 1 df-sb ( [ 𝑡 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 = 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )