Description: Lemma for the equality theorem for partition ~? parteq1 . (Contributed by Peter Mazsa, 5-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | disjdmqseqeq1 | ⊢ ( 𝑅 = 𝑆 → ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( Disj 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq | ⊢ ( 𝑅 = 𝑆 → ( Disj 𝑅 ↔ Disj 𝑆 ) ) | |
2 | dmqseqeq1 | ⊢ ( 𝑅 = 𝑆 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) | |
3 | 1 2 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( Disj 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) ) |