Metamath Proof Explorer


Theorem disjdmqseqeq1

Description: Lemma for the equality theorem for partition ~? parteq1 . (Contributed by Peter Mazsa, 5-Oct-2021)

Ref Expression
Assertion disjdmqseqeq1 ( 𝑅 = 𝑆 → ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( Disj 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 disjeq ( 𝑅 = 𝑆 → ( Disj 𝑅 ↔ Disj 𝑆 ) )
2 dmqseqeq1 ( 𝑅 = 𝑆 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) )
3 1 2 anbi12d ( 𝑅 = 𝑆 → ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( Disj 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) )