Metamath Proof Explorer
		
		
		
		Description:  Distribution of division over addition.  (Contributed by NM, 16-Feb-1995)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
					
						|  |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
					
						|  |  | divmulz.3 | ⊢ 𝐶  ∈  ℂ | 
					
						|  |  | divass.4 | ⊢ 𝐶  ≠  0 | 
				
					|  | Assertion | divdiri | ⊢  ( ( 𝐴  +  𝐵 )  /  𝐶 )  =  ( ( 𝐴  /  𝐶 )  +  ( 𝐵  /  𝐶 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divclz.1 | ⊢ 𝐴  ∈  ℂ | 
						
							| 2 |  | divclz.2 | ⊢ 𝐵  ∈  ℂ | 
						
							| 3 |  | divmulz.3 | ⊢ 𝐶  ∈  ℂ | 
						
							| 4 |  | divass.4 | ⊢ 𝐶  ≠  0 | 
						
							| 5 | 1 2 3 | divdirzi | ⊢ ( 𝐶  ≠  0  →  ( ( 𝐴  +  𝐵 )  /  𝐶 )  =  ( ( 𝐴  /  𝐶 )  +  ( 𝐵  /  𝐶 ) ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( ( 𝐴  +  𝐵 )  /  𝐶 )  =  ( ( 𝐴  /  𝐶 )  +  ( 𝐵  /  𝐶 ) ) |