Metamath Proof Explorer
Description: Relationship between division and reciprocal. Theorem I.9 of
Apostol p. 18. (Contributed by NM, 9-Feb-1995)
|
|
Ref |
Expression |
|
Hypotheses |
divclz.1 |
⊢ 𝐴 ∈ ℂ |
|
|
divclz.2 |
⊢ 𝐵 ∈ ℂ |
|
|
divcl.3 |
⊢ 𝐵 ≠ 0 |
|
Assertion |
divreci |
⊢ ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
divclz.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
divclz.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
divcl.3 |
⊢ 𝐵 ≠ 0 |
4 |
1 2
|
divreczi |
⊢ ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) |