Metamath Proof Explorer


Theorem divreci

Description: Relationship between division and reciprocal. Theorem I.9 of Apostol p. 18. (Contributed by NM, 9-Feb-1995)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divcl.3 𝐵 ≠ 0
Assertion divreci ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) )

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 divclz.2 𝐵 ∈ ℂ
3 divcl.3 𝐵 ≠ 0
4 1 2 divreczi ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) )
5 3 4 ax-mp ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) )