Metamath Proof Explorer
		
		
		Theorem dmi
		Description:  The domain of the identity relation is the universe.  (Contributed by NM, 30-Apr-1998)  (Proof shortened by Andrew Salmon, 27-Aug-2011)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					dmi | 
					⊢  dom   I   =  V  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqv | 
							⊢ ( dom   I   =  V  ↔  ∀ 𝑥 𝑥  ∈  dom   I  )  | 
						
						
							| 2 | 
							
								
							 | 
							ax6ev | 
							⊢ ∃ 𝑦 𝑦  =  𝑥  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 4 | 
							
								3
							 | 
							ideq | 
							⊢ ( 𝑥  I  𝑦  ↔  𝑥  =  𝑦 )  | 
						
						
							| 5 | 
							
								
							 | 
							equcom | 
							⊢ ( 𝑥  =  𝑦  ↔  𝑦  =  𝑥 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							bitri | 
							⊢ ( 𝑥  I  𝑦  ↔  𝑦  =  𝑥 )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbii | 
							⊢ ( ∃ 𝑦 𝑥  I  𝑦  ↔  ∃ 𝑦 𝑦  =  𝑥 )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							mpbir | 
							⊢ ∃ 𝑦 𝑥  I  𝑦  | 
						
						
							| 9 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 10 | 
							
								9
							 | 
							eldm | 
							⊢ ( 𝑥  ∈  dom   I   ↔  ∃ 𝑦 𝑥  I  𝑦 )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							mpbir | 
							⊢ 𝑥  ∈  dom   I   | 
						
						
							| 12 | 
							
								1 11
							 | 
							mpgbir | 
							⊢ dom   I   =  V  |