Metamath Proof Explorer


Theorem dmqseqd

Description: Equality theorem for domain quotient set, deduction version. (Contributed by Peter Mazsa, 23-Apr-2021)

Ref Expression
Hypothesis dmqseqd.1 ( 𝜑𝑅 = 𝑆 )
Assertion dmqseqd ( 𝜑 → ( dom 𝑅 / 𝑅 ) = ( dom 𝑆 / 𝑆 ) )

Proof

Step Hyp Ref Expression
1 dmqseqd.1 ( 𝜑𝑅 = 𝑆 )
2 dmqseq ( 𝑅 = 𝑆 → ( dom 𝑅 / 𝑅 ) = ( dom 𝑆 / 𝑆 ) )
3 1 2 syl ( 𝜑 → ( dom 𝑅 / 𝑅 ) = ( dom 𝑆 / 𝑆 ) )