Description: The function S is a family of subgroups. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdcntz.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| Assertion | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdcntz.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdf | ⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 5 | 2 | feq2d | ⊢ ( 𝜑 → ( 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ↔ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) ) |
| 6 | 4 5 | mpbid | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |