Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elif | ⊢ ( 𝐴 ∈ if ( 𝜑 , 𝐵 , 𝐶 ) ↔ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) ∨ ( ¬ 𝜑 ∧ 𝐴 ∈ 𝐶 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq2 | ⊢ ( if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐵 → ( 𝐴 ∈ if ( 𝜑 , 𝐵 , 𝐶 ) ↔ 𝐴 ∈ 𝐵 ) ) | |
| 2 | eleq2 | ⊢ ( if ( 𝜑 , 𝐵 , 𝐶 ) = 𝐶 → ( 𝐴 ∈ if ( 𝜑 , 𝐵 , 𝐶 ) ↔ 𝐴 ∈ 𝐶 ) ) | |
| 3 | 1 2 | elimif | ⊢ ( 𝐴 ∈ if ( 𝜑 , 𝐵 , 𝐶 ) ↔ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) ∨ ( ¬ 𝜑 ∧ 𝐴 ∈ 𝐶 ) ) ) |