| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pell1234qrval | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( Pell1234QR ‘ 𝐷 )  =  { 𝑎  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝑎  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) } ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ↔  𝐴  ∈  { 𝑎  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝑎  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) } ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ↔  𝐴  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) ) ) ) | 
						
							| 4 | 3 | anbi1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 )  ↔  ( 𝐴  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 5 | 4 | 2rexbidv | ⊢ ( 𝑎  =  𝐴  →  ( ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝑎  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 )  ↔  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝐴  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 6 | 5 | elrab | ⊢ ( 𝐴  ∈  { 𝑎  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝑎  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) }  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝐴  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) ) ) | 
						
							| 7 | 2 6 | bitrdi | ⊢ ( 𝐷  ∈  ( ℕ  ∖  ◻NN )  →  ( 𝐴  ∈  ( Pell1234QR ‘ 𝐷 )  ↔  ( 𝐴  ∈  ℝ  ∧  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℤ ( 𝐴  =  ( 𝑧  +  ( ( √ ‘ 𝐷 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝐷  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) ) ) ) |