Metamath Proof Explorer


Theorem eluzfz2b

Description: Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005)

Ref Expression
Assertion eluzfz2b ( 𝑁 ∈ ( ℤ𝑀 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 eluzfz2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) )
2 elfzuz ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → 𝑁 ∈ ( ℤ𝑀 ) )
3 1 2 impbii ( 𝑁 ∈ ( ℤ𝑀 ) ↔ 𝑁 ∈ ( 𝑀 ... 𝑁 ) )