Metamath Proof Explorer


Theorem elxpcbasex1

Description: A non-empty base set of the product category indicates the existence of the first factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025) (Proof shortened by SN, 15-Oct-2025)

Ref Expression
Hypotheses elxpcbasex1.t 𝑇 = ( 𝐶 ×c 𝐷 )
elxpcbasex1.b 𝐵 = ( Base ‘ 𝑇 )
elxpcbasex1.x ( 𝜑𝑋𝐵 )
Assertion elxpcbasex1 ( 𝜑𝐶 ∈ V )

Proof

Step Hyp Ref Expression
1 elxpcbasex1.t 𝑇 = ( 𝐶 ×c 𝐷 )
2 elxpcbasex1.b 𝐵 = ( Base ‘ 𝑇 )
3 elxpcbasex1.x ( 𝜑𝑋𝐵 )
4 reldmxpc Rel dom ×c
5 1 2 4 strov2rcl ( 𝑋𝐵𝐶 ∈ V )
6 3 5 syl ( 𝜑𝐶 ∈ V )