Metamath Proof Explorer


Theorem ensymb

Description: Symmetry of equinumerosity. Theorem 2 of Suppes p. 92. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion ensymb ( 𝐴𝐵𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 ener ≈ Er V
2 1 a1i ( ⊤ → ≈ Er V )
3 2 ersymb ( ⊤ → ( 𝐴𝐵𝐵𝐴 ) )
4 3 mptru ( 𝐴𝐵𝐵𝐴 )