Metamath Proof Explorer


Theorem epini

Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013)

Ref Expression
Hypothesis epini.1 𝐴 ∈ V
Assertion epini ( E “ { 𝐴 } ) = 𝐴

Proof

Step Hyp Ref Expression
1 epini.1 𝐴 ∈ V
2 vex 𝑥 ∈ V
3 2 eliniseg ( 𝐴 ∈ V → ( 𝑥 ∈ ( E “ { 𝐴 } ) ↔ 𝑥 E 𝐴 ) )
4 1 3 ax-mp ( 𝑥 ∈ ( E “ { 𝐴 } ) ↔ 𝑥 E 𝐴 )
5 1 epeli ( 𝑥 E 𝐴𝑥𝐴 )
6 4 5 bitri ( 𝑥 ∈ ( E “ { 𝐴 } ) ↔ 𝑥𝐴 )
7 6 eqriv ( E “ { 𝐴 } ) = 𝐴