Metamath Proof Explorer


Theorem epnsym

Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022)

Ref Expression
Assertion epnsym E ≠ E

Proof

Step Hyp Ref Expression
1 cnvepnep ( E ∩ E ) = ∅
2 disjeq0 ( ( E ∩ E ) = ∅ → ( E = E ↔ ( E = ∅ ∧ E = ∅ ) ) )
3 epn0 E ≠ ∅
4 eqneqall ( E = ∅ → ( E ≠ ∅ → E ≠ E ) )
5 3 4 mpi ( E = ∅ → E ≠ E )
6 5 adantl ( ( E = ∅ ∧ E = ∅ ) → E ≠ E )
7 6 a1i ( E = E → ( ( E = ∅ ∧ E = ∅ ) → E ≠ E ) )
8 neqne ( ¬ E = E → E ≠ E )
9 8 a1d ( ¬ E = E → ( ¬ ( E = ∅ ∧ E = ∅ ) → E ≠ E ) )
10 7 9 bija ( ( E = E ↔ ( E = ∅ ∧ E = ∅ ) ) → E ≠ E )
11 1 2 10 mp2b E ≠ E