Description: The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epnsym | ⊢ ◡ E ≠ E | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvepnep | ⊢ ( ◡ E ∩ E ) = ∅ | |
| 2 | disjeq0 | ⊢ ( ( ◡ E ∩ E ) = ∅ → ( ◡ E = E ↔ ( ◡ E = ∅ ∧ E = ∅ ) ) ) | |
| 3 | epn0 | ⊢ E ≠ ∅ | |
| 4 | eqneqall | ⊢ ( E = ∅ → ( E ≠ ∅ → ◡ E ≠ E ) ) | |
| 5 | 3 4 | mpi | ⊢ ( E = ∅ → ◡ E ≠ E ) | 
| 6 | 5 | adantl | ⊢ ( ( ◡ E = ∅ ∧ E = ∅ ) → ◡ E ≠ E ) | 
| 7 | 6 | a1i | ⊢ ( ◡ E = E → ( ( ◡ E = ∅ ∧ E = ∅ ) → ◡ E ≠ E ) ) | 
| 8 | neqne | ⊢ ( ¬ ◡ E = E → ◡ E ≠ E ) | |
| 9 | 8 | a1d | ⊢ ( ¬ ◡ E = E → ( ¬ ( ◡ E = ∅ ∧ E = ∅ ) → ◡ E ≠ E ) ) | 
| 10 | 7 9 | bija | ⊢ ( ( ◡ E = E ↔ ( ◡ E = ∅ ∧ E = ∅ ) ) → ◡ E ≠ E ) | 
| 11 | 1 2 10 | mp2b | ⊢ ◡ E ≠ E |