Metamath Proof Explorer


Theorem ex-id

Description: Example for df-id . Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion ex-id ( 5 I 5 ∧ ¬ 4 I 5 )

Proof

Step Hyp Ref Expression
1 eqid 5 = 5
2 5re 5 ∈ ℝ
3 2 elexi 5 ∈ V
4 3 ideq ( 5 I 5 ↔ 5 = 5 )
5 1 4 mpbir 5 I 5
6 4re 4 ∈ ℝ
7 4lt5 4 < 5
8 6 7 ltneii 4 ≠ 5
9 3 ideq ( 4 I 5 ↔ 4 = 5 )
10 8 9 nemtbir ¬ 4 I 5
11 5 10 pm3.2i ( 5 I 5 ∧ ¬ 4 I 5 )