Metamath Proof Explorer
		
		
		
		Description:  Distribution of existential quantifiers.  (Contributed by NM, 17-Mar-1995)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | exdistr2 | ⊢  ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 ∃ 𝑧 𝜓 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 19.42vv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ∃ 𝑦 ∃ 𝑧 𝜓 ) ) | 
						
							| 2 | 1 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑  ∧  𝜓 )  ↔  ∃ 𝑥 ( 𝜑  ∧  ∃ 𝑦 ∃ 𝑧 𝜓 ) ) |