| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1od.1 | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							f1o2d.2 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							f1o2d.3 | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  𝐷  ∈  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							f1o2d.4 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  =  𝐷  ↔  𝑦  =  𝐶 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eleq1a | 
							⊢ ( 𝐶  ∈  𝐵  →  ( 𝑦  =  𝐶  →  𝑦  ∈  𝐵 ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  =  𝐶  →  𝑦  ∈  𝐵 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							impr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 ) )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								4
							 | 
							biimpar | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑦  =  𝐶 )  →  𝑥  =  𝐷 )  | 
						
						
							| 9 | 
							
								8
							 | 
							exp42 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  ( 𝑦  =  𝐶  →  𝑥  =  𝐷 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							com34 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  =  𝐶  →  ( 𝑦  ∈  𝐵  →  𝑥  =  𝐷 ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							imp32 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 ) )  →  ( 𝑦  ∈  𝐵  →  𝑥  =  𝐷 ) )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							jcai | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 ) )  →  ( 𝑦  ∈  𝐵  ∧  𝑥  =  𝐷 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eleq1a | 
							⊢ ( 𝐷  ∈  𝐴  →  ( 𝑥  =  𝐷  →  𝑥  ∈  𝐴 ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  =  𝐷  →  𝑥  ∈  𝐴 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							impr | 
							⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  =  𝐷 ) )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								4
							 | 
							biimpa | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑥  =  𝐷 )  →  𝑦  =  𝐶 )  | 
						
						
							| 17 | 
							
								16
							 | 
							exp42 | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  ∈  𝐵  →  ( 𝑥  =  𝐷  →  𝑦  =  𝐶 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							com23 | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝑥  =  𝐷  →  𝑦  =  𝐶 ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							com34 | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  →  ( 𝑥  =  𝐷  →  ( 𝑥  ∈  𝐴  →  𝑦  =  𝐶 ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imp32 | 
							⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  =  𝐷 ) )  →  ( 𝑥  ∈  𝐴  →  𝑦  =  𝐶 ) )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							jcai | 
							⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑥  =  𝐷 ) )  →  ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 ) )  | 
						
						
							| 22 | 
							
								12 21
							 | 
							impbida | 
							⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  ↔  ( 𝑦  ∈  𝐵  ∧  𝑥  =  𝐷 ) ) )  | 
						
						
							| 23 | 
							
								1 2 3 22
							 | 
							f1ocnvd | 
							⊢ ( 𝜑  →  ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  ◡ 𝐹  =  ( 𝑦  ∈  𝐵  ↦  𝐷 ) ) )  |