Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi . (Contributed by AV, 10-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | f1vrnfibi | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1dm | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → dom 𝐹 = 𝐴 ) | |
2 | dmexg | ⊢ ( 𝐹 ∈ 𝑉 → dom 𝐹 ∈ V ) | |
3 | eleq1 | ⊢ ( 𝐴 = dom 𝐹 → ( 𝐴 ∈ V ↔ dom 𝐹 ∈ V ) ) | |
4 | 3 | eqcoms | ⊢ ( dom 𝐹 = 𝐴 → ( 𝐴 ∈ V ↔ dom 𝐹 ∈ V ) ) |
5 | 2 4 | syl5ibr | ⊢ ( dom 𝐹 = 𝐴 → ( 𝐹 ∈ 𝑉 → 𝐴 ∈ V ) ) |
6 | 1 5 | syl | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → ( 𝐹 ∈ 𝑉 → 𝐴 ∈ V ) ) |
7 | 6 | impcom | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ V ) |
8 | f1dmvrnfibi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin ) ) | |
9 | 7 8 | sylancom | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ( 𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin ) ) |