Metamath Proof Explorer


Theorem f1vrnfibi

Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi . (Contributed by AV, 10-Jan-2020)

Ref Expression
Assertion f1vrnfibi ( ( 𝐹𝑉𝐹 : 𝐴1-1𝐵 ) → ( 𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin ) )

Proof

Step Hyp Ref Expression
1 f1dm ( 𝐹 : 𝐴1-1𝐵 → dom 𝐹 = 𝐴 )
2 dmexg ( 𝐹𝑉 → dom 𝐹 ∈ V )
3 eleq1 ( 𝐴 = dom 𝐹 → ( 𝐴 ∈ V ↔ dom 𝐹 ∈ V ) )
4 3 eqcoms ( dom 𝐹 = 𝐴 → ( 𝐴 ∈ V ↔ dom 𝐹 ∈ V ) )
5 2 4 syl5ibr ( dom 𝐹 = 𝐴 → ( 𝐹𝑉𝐴 ∈ V ) )
6 1 5 syl ( 𝐹 : 𝐴1-1𝐵 → ( 𝐹𝑉𝐴 ∈ V ) )
7 6 impcom ( ( 𝐹𝑉𝐹 : 𝐴1-1𝐵 ) → 𝐴 ∈ V )
8 f1dmvrnfibi ( ( 𝐴 ∈ V ∧ 𝐹 : 𝐴1-1𝐵 ) → ( 𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin ) )
9 7 8 sylancom ( ( 𝐹𝑉𝐹 : 𝐴1-1𝐵 ) → ( 𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin ) )