Metamath Proof Explorer


Theorem fcfelbas

Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion fcfelbas ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐴𝑋 )

Proof

Step Hyp Ref Expression
1 fcfval ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) → ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) )
2 1 eleq2d ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ↔ 𝐴 ∈ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) )
3 eqid 𝐽 = 𝐽
4 3 fclselbas ( 𝐴 ∈ ( 𝐽 fClus ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) → 𝐴 𝐽 )
5 2 4 syl6bi ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) → 𝐴 𝐽 ) )
6 5 imp ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐴 𝐽 )
7 simpl1 ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
8 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
9 7 8 syl ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝑋 = 𝐽 )
10 6 9 eleqtrrd ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fClusf 𝐿 ) ‘ 𝐹 ) ) → 𝐴𝑋 )