Metamath Proof Explorer


Theorem frege23

Description: Syllogism followed by rotation of three antecedents. Proposition 23 of Frege1879 p. 42. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege23 ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜏𝜑 ) → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 frege18 ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜏𝜑 ) → ( 𝜓 → ( 𝜏 → ( 𝜒𝜃 ) ) ) ) )
2 frege22 ( ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜏𝜑 ) → ( 𝜓 → ( 𝜏 → ( 𝜒𝜃 ) ) ) ) ) → ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜏𝜑 ) → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( ( 𝜏𝜑 ) → ( 𝜓 → ( 𝜒 → ( 𝜏𝜃 ) ) ) ) )