Metamath Proof Explorer


Theorem freld

Description: A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis freld.1 ( 𝜑𝐹 : 𝐴𝐵 )
Assertion freld ( 𝜑 → Rel 𝐹 )

Proof

Step Hyp Ref Expression
1 freld.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 frel ( 𝐹 : 𝐴𝐵 → Rel 𝐹 )
3 1 2 syl ( 𝜑 → Rel 𝐹 )